
NASA-CR-192820

t

!' Knowledge_ Base Methodology-
Me_logy for First Engineering

__ = S_=i_;Language (ESL) Knowledge Base
f

/

/57_ 23

© ©

_-.:-.

° = Kumar Peeris

, -_ __ _--- Michel Izygon

Barrios Technology, Inc.

Research Institute for Computing and Information Systems

University of Houston-Clear Lake

DRAFT INTERIM REPORT

The RICIS Concept

The University of Houston-Clear Lake established the Research Institute for

Computing and Information Systems (RICIS) in 1986 to encourage the NASA

Johnson Space Center (JSC) and local Industry to actavely support research

In the computing and information sciences. As part of this endeavor, UHCL

proposed a partnership wlth JSC to Jointly define and manage an Integrated

program of research in advanced data processing technology needed forJSC's

main missions, IncludIng administrative, engineering and science responsi-

bilities. JSC agreed and entered into a continuing cooperative agreement

with UHCL beginning In May 1986, to Jointly plan and execute such research

through RICIS. Additionally, under Cooperative Agreement NCC 9-16,

computing and educational facilities are shared by the two institutions to
conduct the research.

The UHCL/R]CIS mission is to conduct, coordInate, and disseminate research

and professional level education In computing and information systems to

serve the needs of the government, industry, community and academia.

RICIS combines resources of UHCL and its gateway affiliates to research and

develop materials, prototypes and publications on topics of mutual Interest

to its sponsors and researchers. Within UHCL, the mission is being

implemented through interdisciplinary Involvement of faculty and students

from each of the four schools: BusIness and Public Administration, Educa-

tion, Human Sciences and Humanities, and Natural and AppIled Sciences.

RICIS also collaborates with industry In a companion program. Thls program

is focused on serving the research and advanced development needs of

Industry.

Moreover, UHCL established relationships with other universities and re-

search organizations, having common research Interests, to provide addi-

tional sources of expertise to conduct needed research. For example, UHCL

has entered Into a special partnership with Texas A&M University to help

oversee RICIS research an-I education programs, while other research

organizations are involved via the "gateway" concept.

A major role of RIClS then is to find the best match of sponsors, researchers

and research objectives to advance knowledge In the computing and informa-

tion sciences. RICIS, working Jointly with its sponsors, advises on research

needs, recommends principals for conducting the research, provides tech-

nical and administrative support to coordinate the research and integrates

technical results Into the goals of UHCL, NASA/JSC and Industry.

RICIS Preface

This research was conducted under auspices of the Research Institute for Computing and

Information Systems by Kumar Peeris of the University of Houston-Clear Lake and Dr.

Michel Izygon of Barrios Technology, Inc. Dr. Rodney L. Bown served as the RICIS
research coordinator.

Funding was provided by the Information Systems Directorate, NASA/JSC through
Cooperative Agreement NCC 9-16 between the NASA Johnson Space Center and the

University of Houston-Clear Lake. The NASA research coordinator for this activity was

Ernest M. Fridge HI, Deputy Chief of the Software Technology Branch, Information

Technology Division, Information Systems Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the authors and should

not be interpreted as representative of the official policies, either express or implied, of

UHCL, RICIS, NASA or the United States Government.

Research Activity Number:

Subcontract Number:

Task Deliverable Number of

Specific Reference from SOW:

SR.02

103

2

Title of Task:

Subcontractor:

Cooperative Agreement Number:

Principal Investigator:

NASA Technical Monitor:

Type of Report:

Period Covered by Report:

Due Date:

Knowledge Base Methodology

Methodology for first Engineering

Script Language (ESL)
Knowledge Base

Barrios Technology Inc.

NCC-9-16

Dr. Michel E. Izygon

Ernest M. Fridge III

Draft Interim Report

06/01/92 to 12/01/92

December 31, 1992

Delivered To: RICIS Document Control Department
Box 444
University of Houston-Clear Lake
2700 Bay Area Boulevard
Houston, Texas 77058-1096

*** FIRST DRAFT ***

INTERIM REPORT:
KNOWLEDGE BASE METHODOLOGY -

METHODOLOGY FOR FIRST ENGINEERING SCRIPT LANGUAGE
(ESL) KNOWLEDGE BASE

by

Kumar Peeris (UHCL) and Michel E. Izygon (Barrios)

Reuse : Background and concepts.

Software Reuse is one of the technologies that is currently

presented as being able to solve the so-called "Software Crisis". In

this section, we will describe some of the key concepts of this

technology, the different approaches to reusability, some of the

issues related to it, and we will try to present how the Engineering

Script Language (ESL) implement the reuse paradigm.

Reuse Concepts

The primary goal of reusing software components is that

software can be developed faster, cheaper and with higher quality.

Though, reuse is not automatic and can not just happen. It has to be

carefully engineered. For example a component needs to be easily
understandable in order to be reused, and it has also to be malleable

enough to fit into different applications. In fact the software

development process is deeply affected when reuse is being applied.

During component development, a serious effort has to be directed

toward making these components as reusable as possible. This

implies defining reuse coding style guidelines and applying them to

any new component to create as well as to any old component to

modify. These guidelines should point out the favorable reuse

features and may apply to naming conventions, module size and

cohesion, internal documentation, etc... During application

development, effort is shifted from writing new code toward finding

and eventually modifying existing pieces of code, then assembling

them together. We see here that reuse is not free, and therefore has

to be carefully managed.

Approaches to Reuse

There are two different approaches to reusing software

components: Adaptive Reuse and Compositional Reuse. Their
characteristics are as follow:

• Adaptive Reuse

*** FIRST DRAFT ***

With this approach,

components are templates or paterns and are changed each time

they are used.

• Compositional Reuse

components are atomic and don't change when they are used.

Issues / Dilemas

The operational problems of reusability are the following:

• finding components

• understanding components

• modifying components

• composing components

When a programmer has to develop a piece of code, the first

thing he does is to look in the library of available components to

check if there is one that matches his needs. This search process

needs to be able to find not only the exact match, but also the "close

enough" type of components if the ideal one does not exist. The

difficulty of this step is directly linked to the breadth of the library

of components. The more specific are the components, the more

numerous they will be in the library, and the more difficult it is to

find the appropriate one. This aspect of the reuse process is dealt

with library systems.

Understanding a component is the next step the programmer

will go through, in order to be able to use properly the component he

found during the search process. If modifications are necessary, i.e. if

the component does not match exactly the need of the programmer,

the understanding is even more important as he will need to enter

into the code and change it. For this understanding process to be

succesful, there needs to be a lot of emphasis on documentation

during design and coding of any reusable component.

Modification of components is the step that seems to be the less

automatizable. The programmer has to do his work at customizing

the component to his needs. The issue that is related to this step is

that we can foresee that many components may be spawned out of a

common root component in order to customize it to the different

needs of different programmers. The only way to prevent the library

to get out of control is to build components that are generic enough

to be applied to many different situation.

Composing components is the step that is completely specific to

the reuse-based software development process. Once all the needed

components have been found, eventually modified, or developed

from scratch, there needs to be a framework where the programmer

2

*** FIRST DRAFT ***

can specify how to compose these components together to build the

targeted application.

ESL vs Reuse

The ESL concept of Reuse is based on the following principles:

ESL is targeted toward domain specialists who do not have a

sufficient knowledge of Ada programming language to develop code

in their domain. The tool would allow them to graphically develop an

application from the available pieces of code stored in a software

component library. We should point out here, that the ESL system

does not address the issue of developing the elementary components

that are populating the library. It takes as a first assumption that

these components exist, that they are medium to gross grain

components wrtten in Ada, and that they were input in the

knowledge base with the proper amount of information to allow their

retrieval and their correct use. Based on these assumptions, ESL

contains the different mechanisms that allows an application

developer to build the program he needs from the stored

components. Let us now focus on the different parts of ESL:

• The first part of ESL deals with the storage of the components. The

sytem is built on a knowledge base writen in ART-IM. This

knowledge base contains the important information about the

components such as what it does, what the inputs and outputs are, if

the component is composed of other components or if it is an

elementary one.

• The second part of ESL addresses the issue of retrieving a

component. ESL has a Case Base Reasoning (CBR) engine that allows to

query the library for components having some similarities with the

needed component. The system will present a list of components

belonging to the same class, ordered according to the number of

identical attributes values. The application developer can refine his

query by analysing the closest component, changing the unfit

attributes and then resubmitting the query with the added
information.

• The third part of ESL focus on assembling the retrieved

components in order to build an application. A graphical editor

allows the application developer to graphically link the desired

components.

• The fourth part of ESL is the code generator. From the graphical

representation of the flow of inputs and triggers through the

different components, ESL generates an Ada main program that

contains the calls to the different routines chosen by the user.

3

*** FIRST DRAFT ***

1.1 Description of the ESL Reusable method

The Engineering Script Language (ESL) is a language designed to

allow non programming users to write High Order Language (HOL)

programs by drawing directed graphs to represent the program and

having the system generate the corresponding program in HOL. For

the implementation of ESL proposed, the HOL code to be generated
will be Ada.

The building blocks for directed graphs are nodes and connectors.

Nodes are visually represented as labeled icons (e.g., rectangles or

circles) and have input and output ports which are used to receive

produce data. On a graph, an output port from one node may be

connected to an input node on another node via a connector. Visually,

all connectors passing data between two nodes are represented as a

single arrow connecting the icons representing the nodes. In addition,

a graph itself can have input ports and output ports which are

connected to ports or nodes on the graph. Visually, the set of all

graph input ports is represented by a single icon on the left of the

editor window. Each arrow from this icon to a node on the graph

represents a group of connectors. Similarly, the set of all graph

output ports is represented visually as a single icon on the right of
the editor window.

Each node on a graph may represent a primitive procedure or

function in the HOL (i.e., a primitive subprogram), an ESL control or

data-passing mechanism, or another graph. When a node is a

primitive subprogram node, the node's ports represent the

subprogram's parameters and, if applicable, its return value.

Node Objects

There are several classes of node objects: the subprogram node,

(which includes procedure-node, function-node, and subgraph-node

objects), the Merge node, the Replicator node, and the control nodes

(If, Select, and Iterator).

A subprogram-node object is used to represent a procedure or

function coded in the HOL or to represent a graph previously created

through the ESL editor. Each subprogram-node object points to a

4

*** FIRST DRAFT ***

subprogram object. Subprogram objects are objects visible through

the ACCESS tools panel and included in the ACCESS taxonomy.

Subprogram objects have corresponding ports. Ports of a procedure

or a function object represent parameters of the corresponding

procedure or function or the return value of the function. Ports of a

graph object, called graph ports, are mapped to ports on nodes of the

graph by connector objects.

Implementation Objects

An implementation object contains information about how a

subprogram object is implemented. The merge, replicator, If, Select

and Iterator nodes each have an implicit implementation and do not

have an associated implementation object. There are three classes of

implementation objects.: Inline, seperately compiled procedure, and
package.

Inline implementation objects are appropriate only for graph objects.

This type of implementation means that when a subgraph node is

part of a larger graph for which code is generated, the code

corresponding to the subgraph node is generated online.

Implementation objects whose type is seperately compiled procedure

are valid for all subprogram objects. Such an implementation object

indicates that the subprogram is implemented as a seperately

compiled Ada procedure. For a seperately compiled procedure to be

called by an Ada program, the program must be first "with" the

procedure; then the procedure may be called.

Package implementation objects are valid for subprograms of

procedure or function type. Such an implementation object indicates
that the subprogram has been implemented as a visible function in

an Ada package. For a procedure or function in a package to be called

by an Ada program, the program must first "with" the package; then

the procedure may be called using the "package.procedure" notation.

Object Hierarchy

5

*** FIRST DRAFT ***

The following is the hierarchy of objects in ESL system.

subprogram

primitive subprogram
function

procedure

graph
node

port

subprogram node

primitive subprogram node

procedure node
function node

subgraph node

merge node

replicator node
control node

if node

select node

iterator node

graph port

procedure port

function port

node port

connector group
connector

implementation

inline implementation

seperately complied procedure implementation

package implementation

data type

6

*** FIRST DRAFT ***

Application Developers IUI

I I
Catalog _ .==--

Domain_Speci, fic_"

Knowledg_Engineer I

Reusable

Parts +

Metadata

Reusable

ESL

Subgraph

ESL editor

Menus

0plication Source Code

m==

Complete

Application
With

All required

rnput Data

Application

&_ Metadata
About

Input

Knowledg_
Engineer

Useri_ IUI

_ LibraryCatelog
.p

IUI

'4
Reusable:

Data
Sets

Fig. 1.1.1 Building an Application Program with the help of a Parts Composition System

Figure 1.1.1 shows the various steps that would be involved in

building a complete application with the help of a Parts Composition

System (PCS), as currently envisioned. A library of procedures (or

more generically, primitives) containing software parts that are

needed by most application programs within the domain of interest

is opened and scanned. If this library contains most of the required

primitives, then the application developer may select to use it;

otherwise, additional libraries may be searched.

Depending on the decisions of the libraries' management

organizations, application developers may or may not be allowed to

create modified versions of primitives in the libraries. However, the

development, organization, and maintenance of these domain-specific

libraries is primarily the responsibility of the software development

engineers and not the job of the application developers, who may

well be aerospace engineers with minimal programming experience.

The software development engineers receive part specifications from

the application developers and provide implementations to populate

required libraries. If well managed, this seperation of roles helps to

limit the amount of domain expertise that the software engineer

must have and also the amount of programming experience that the
application developer must have.

7

*** FIRST DRAFT ***

The construction of primitives can be done using the Computer-

Aided Software Engineering (CASE) tools. However, a useful, well-

maintained library of reusable parts consists of more than a

disorganized jumble of parts. A librarian and library tools are clearly

required. A librarian must build and maintain a PCS knowledge base

using tools that extract the necessary metadata from each primitive

(such as input, output, purpose, and constraints) and then catalog this

information with the knowledge base's schemas. The cataloging

process includes the assignment of each primitive to a specific

knowledge base class. Careful development of a meaningful class

structure is essential to the usefulness of the library's catalog and

one of the most challenging tasks of the knowledge engineer. Special

displays may also bo required for some classes of primitives in order

to make the catalog as user friendly as possible. In short, the

knowledge engineer must build an IUI for each domain-specific

library of reusable parts. His/her role is to serve as the intermediary

between the software development engineers and the application

developers.

Once an application developer has selected the most appropriate

domain-specific library of parts, he/she invokes the ESL editor. As

already explained, the ESL editor allows the application developer to

create, modify, store and retrieve graphs that represent applications.

The graphs show the structure of an application and what data

controls and constraints flow between the components (fig.l.l.2) The

components are depicted by boxes called nodes, and the data

controls, and constraints are shown as arrows linking the nodes.

Other structures, also called nodes, allow for merging and replicating

links and for including looping and branching logic. Each component

(box) is either a primitive or a subgraph, which makes possible

hierarchical decomposition. (fig.l.l.2)

With ESL editor, an application developer uses a mouse and pointer

to select menu and palette commands and to select nodes and links

on the screen. In this way, graphs are constructed, modified, and

stored for possible reuse.

8

*** FIRST DRAFT ***

_ Initi;lization

Comp _ Close Out

[' Iterator F

Fig.1.1.2 A typical ESL Graph

j._ wa°leJ_'_

stem(_ "_

//
// I I

\

/ I \ \

/ I \ x

Fig. 1.1.3 Hierarchical Decomposition of ESL graphs

Once the graphs representing an application are completed, the

application developer will invoke menu commands to validate the

graph system and to generate the required code in some high order

language, such as Ada. The generated code, in the form of a main

program and subprograms, will then be ready to be compiled and

linked with the object code of the primitives from the domain

specific library(ies). Alternatively, source code templates (such as

Ada generics or even main programs with certain parameters that

must be initialized before compilation) might be generated, if

required.

9

*** FIRST DRAFT ***

ESL graphs will be stored in a knowledge base, where they will be

represented, using a schema system, as objects with attributes. The

ability to store and retrieve ESL graphs implies a need for well-

organized, domain-specific libraries of graphs with good library

catalogs. Just as in the case of the libraries of primitives, a knowledge

engineer will need to create IUI s for the ESL _aph libraries.

The internal representation and storage of graphs, the semantic

interpretation and validation of the graphs, and the generation of

code in high order language are done using knowledge-based

technology.

Graph Implementation and Execution

Fig 1.1.4 depicts a typical example graph created using the ESL editor

panel. Each box is an instance of an object. In other words each box is

merely a procedure call or a function call. The iterator node indicates

an iteration at that particular point until a certain condition is

satisfied. INNER_LOOP is a sub graph attatched to the main graph. It

is a seperately edited graph. The sub graph is shown in fig. 1.1.5.

Prior to executing a complete application, the graphs must be

translated to a hign order language (I-IOL) representation and

subsequently compiled. A graph implementation is an HOL

representation of a hierarchical ESL data flow graph that can be

compiled by a standard HOL compiler for subsequent execution. The

translation process generates the graph implementation by mapping

the features found in the application's graph schemas to predefined

10

*** FIRST DRAFT ***

HOL constructs.

m

1

rl

P

u

t

m

-4 H H
get exec " Set ptr to re Set Ev_:

H I
Get Exec "

l,
Set Num De

Ge_ End Of Run

{ F
Compute Num oE D Get; Exec

H H P-_
INNER_LOOP Get Inpul Get Exec

Fig. 1.1.4 An ESL graph example

m

1

n

P

u

t

-4 H
Check Evnts I Get Exec t Get End Of Phase

ITERATI

L H
Set Environment Model

H _-q
One Step Check Evnts 2 Get Exce 2 Get End of Phase

Fig. 1.1.5 ESL sub graph for INNER_LOOP

11

*** FIRST DRAFT ***

Generated Code

-Ada code for graph six_dof_driver

with AS DS_Exec_Record_Manager;

with six_dof_driver_inner;

wth Environment_model;

with Six Dof_lnstantiations;

With state_types;

procedure six_dof_driver is

TEST18 : Boolean := TRUE;

Exec15 : ASDS_Exec_Record_Pointer_type;

Exec20 : ASDS_Exec Record_Pointer_type;

Num_Diff_Eq16 : Positive;

Exect7 : AS DS_Exec_Record_Pointer._Type;

Exec19 : ASDS_Exec_Record_Pointer_Type;

begin

- Code for node Get Exec 1

Exec15 := Six_DOF_lnstantiations.Get_Exec;

-- Code for node Set ptr to rec

AS DS_Exec_Record_Manager.set_pointer_to_ASDS_EXEC_record(Execl 5);

-- Code for node Set Evts

Six_DOF_lnstantiations.Sst_Discrete_Events;

- Code for node Get Input 1

Six_DOF_lnstantiations.Six_DO F_IN PUT.Get_Input;

- Code for node Get Exec 2

Exec19 := Six_DOF_lnstantiations.Get_Exec;

- Code for node Get End of Run 1

Test18 := Six_DOF_lnstantiations.Get_End_Of_Run(Exec19);

- Code for ITERATE

while (TEST18) loop

- code for node Compute Num of DEs

Num_Diff Eq16 := State_Type.Compute_Num_Of_Diff_Ef;

- Code for node Get Exec 3

Exec17 := Six_DOF._lnatantiations.Get_Exec;

- Code for node Set Num DEs

Six_DOF_lnstantiations.Set_Num_Diff_Eq(Exec17, Num_Dlff_Eq 16);

12

*** FIRST DRAFT ***

- Code for node inner loop

Six_d of_d river_in ner;

- Code for node Get Input

Six_DOF_lnstantiations.six_DOF_lnput.Get Input;

- Code for node Get Exec

Exec20 := Six_DOF_lnstantiations.Get_Exec;

- Code for node Get End of Run

TEST18 := Six_DOF_lnstantiations.Get_End_Of_Run(Exec20);
end loop;

end six_dof_driver;

1.2 Description of the FM tool kit applications.

1.3 Methods used to reengineer FM tool kit code to ESL Reusable
Method.

As described in section 1.1, we know that the code generated by a

designed graph in the ESL system, would be either a main program

or a sub program. Also we have mentioned , that a main program or

a sub program can be a single procedure or a function call or a set of

procedure or function calls or a set of procedure and function calls.

In addition, a main program or a sub program can have loop

structures and if-then-else structures. An important point is that,

ESL does not support nested loop structures. This is one of the

limitations provided in the ESL system. Hence, primarily, we need to

realize that, reengineering any application should be done within
this limited ESL framework.

Section 1.2 provides a thorough description of the FM tool kit which

is in question to reengineer within the ESL framework.

Currently FM tool kit said to have eleven applications. These source

code have been developed in Ada. These applications look very

similar. For our "reengineering-for-ESL" purposes, four of these

applications - namely INTRPLAN, IPCAPTUR, BEST1WAY and

POWRSWNG , have been randomly selected. A vital part of the

"reengineering-for-ESL" process is to develop a library of procedures

(or more generally, PRIMITIVES) containing the reusable software

13

*** FIRST DRAFT ***

components , so that they can be put together to form a complete

application.

Analysis of FM-Tool kit applications

Initially, let us consider the two applications INTRPLAN & IPCAPTUR.

The code shown below (Fig. 1.3.1 & Fig. 1.3.2) depicts the main

programs of the above two applications.

wi_h INTRPLEC ; use INTRPLEC ;

with INTRPLiO ; use !NTRPLIO ;

procedure INTRPLAN is

begin

RETRIEVE_PREVIOUS_INPUTS_FROM_DISK

LET_USER_EDIT_INPUT_DATA

SAVE_EDITED_INPUTS ON_DISK

SET_UP_CONSTANTS_AND_PLANETARY_EPH_MERIDES

DISPLAY_DATA_SHELL (NOMINAL_DEP._TURE_DELTA_V

for J in 0..I0 loop

COMPUTE_POSITION_AND_VELOCITY_OF_TARGET_PLANET (J

for I in 0..16 loop

COMPUTE_POSITION_.ANDVELOCITY_OF_HOME_P!ANET (I

COMPUTE_TRAJECTORY_DATA (I, J

DISPLAY_VALUE (NOMINAL_DEPARTURE_DELTAV , I, J

CHECK_FOR_INTERRUPT_FROM_KEYBOARD

end loop

end loop

DISPLAY_TRAJECTORYDATA_OF_INTEREST_TO_USER

end

Fig 1.3.1 Main Program for INTRPLAN

with IPCAPTEC ; use IPCAPTEC ;

with I?CAPTIO ; use !PCAPTIO ;

procedure IPCAPTUR is

begin

RETRIEVE_PREVIOUS_INPUTS_FROM_DISK

LET_USER_EDIT_INPUT_DATA

SAVE_EDITED_INPUTS_ON_DISK

SET_UP_CONSTANTS_N-D_P!_hNETARY_EPH_MERIDES

DYSPLAY_DATA_SHELL (NOMINAL_DEPARTUREDELTA_V

for J in 0..!0 loop

COMPUTE_POSITION__AND_VELOCITY_OF_TARGET_PLANET (

for I in 0..16 loop

COMPUTE_POSITION_AND_VELOCITY_OF__HOME_P!ANET (I

)

J)

)

14

*** FIRST DRAFT ***

COMPr/FE_TRAJECTORYDATA

DISPLAY_VALUE (NOMINAL DEPARTURE_DELTA_V

CHECK_FOR_INTERRUPT_FROM_KEYBOARD

end loop

end loop

DISPLAY_TRAJECTORY_DATAOF_INTEREST_TO_USER

end

(I, J)

, I, J)

Fig 1.3.2 - Main program for IPCAPTUR

The two main programs look exactly the same, except for the

different dependent library units. (i.e intrplec & intrplio for

INTRPLAN and ipcaptec & ipcaptio for IPCAPTUR). In ESL terms

these two are non primitives , because they do not have any

computational instructions but a set of module calls. Therefore a

major modification is not required except for the elimination of the

FOR loops. (In ESL, nested looping structures are not allowed.).

A simple solution to this is to incorporate the inner FOR loop in a

separate module and isolate it. Then the two main program
structures will look as follows.

with IPCAPTEC ; use IPCAPTEC ;

with IPCAPTIO ; use IPCAPTIO ;

procedure IPCAPTUR is

begin

RETRIEVEPREVIOUS_INPUTS_FROM_DISK

LET_USER_EDIT_INPUT_DATA

SAVE_EDITED_INPUTS_ON_DiSK

SET UPCONSTANTS_AND_PLANETARY_EPH_MERiDES

DISPLAY_DATA_SHELL (TOTAL_DELTA_V

for J in 0..i0 loop

COMPUTE_POSITION_AND_VELOCITY_OF_TARGET_PLANET

INNER_LOOP;

end loop

DISPLAY_TRAJECTORY_DATA_OF_INTEREST_TO_USER

end

FIG. 1.3.3a

)

J)

wi_h INTRPLEC ; use INTRPLEC ;

wi_h INTRPLIO ; use INTRPLIO ;

15

*** FIRST DRAFT ***

procedure INTRPLAN is

begin

R ETR I EVE P REVI OUS _ INPUT S_F ROM_D I SK

LET_USER_ED IT_INPUT_DATA

SAVE_ED ITED_!NPUTS_ON_D I SK

S ET_UP_CONSTANTS_AND_P LANETARY_E PHEMER IDES

DISPLAY_DATA_SHELL (NOMINAL_D EPARTURE_D ELTA_.V

for J in 0..i0 loop

COMPUTE_POS ITION AND_VELOC ITY_OF_TARGET_P LANET

INNER_LOO P;

end loop

D IS P LAY_TRAJECTORY DATA_OF_I NTEREST_TO_US ER

end

FIG. 1.3.3b

)

J)

procedure INNER_LOOP is

begin

for I in 0..16 loop

COMPUTE_POSITION_ANDVELOCITYOF_HOME_PLANET { I)

COMPUTE_TRAJECTORY DATA { I, J)

DISPLAY_VALUE (TOTAL_DELTA_V , I, J)

CHECK_FOR_INTERRUPT_FROM_KEYBOARD

end loop

end INNER_LOOP;

FIG. 1.3.3c

The module INNER_LOOP is the newly created module in order to

incorporate the inner FOR loop in the original main program of both

INTRPLAN and IPCAPTUR. As a matter of fact , this new procedure

automatically have become a reusable component. Further, the new

main program is just a set of module calls with one single loop

structure. But the FOR loop must be changed to a WHILE loop as to
fulfil ESL requirements. We have discussed this later in this section.

The above modification is inadequate. Of interest to us is whether,

the modified main programs INTRPLAN and IPCAPTUR can be

represented in an ESL graph. A straight answer is NO. Still we need

to change the outer FOR loop structure. We can think of replacing the

outer FOR loop structure with a WHILE loop structure as ESL

supports WHILE loops. In order to do this, the value of J must be

incremented inside the WHILE loop. This can be implemented with a

simple computational statement like J := J + 1;

with IPCAPTEC ; use IPCAPTEC ;

with IPCAPTIO ; use IPCAPT!O ;

procedure IPCAPTUR is

16

*** FIRST DRAFT ***

LOOP_END : boolean := FALSE;

J : integer := I;

begin

RETRIEVE_PREVIOUS_INPUTS_FROM_DISK

LET_USEREDIT_iNPUT_DATA

SAVE_ED ITED_I NPUT S_ON_D I SK

SET_UP_CONSTANTS_AND PLANETARY_E PHEMER IDE S

DISPLAY_DATA_SHELL (TOTAL_DELTA_V

while LOOP_END = FALSE loop

COMPUTE POS I T ION_AND_VELOC ITYO F_TARGET_P LANET

INNER LOOP;

J :* J + i;

if J > i0 then

LOOP_END := TRUE;

end if;

end loop

D I SPLAY_TRAJECTORY_DATAOF_INTEREST_TOUSER

end

FIG. 1.3.4

)

(J)

The above is the modified main program code for IPCAPTUR.

(Considering the main program of IPCAPTUR is good enough for the

time being). Changing the inner FOR loop into a WHILE loop caused

us to incorporate few other additional statements (FIG. 1.3.5) within

the WHILE loop.

J := J ÷ I;

if J > I0 then

LOOP END := TRUE;

end if;

FIG. 1.3.5

Added Computational Statements inside the WHILE loop

The question is whether the modified main program shown in figure

1.3.4 is good enough to construct an ESL graph. Again, a straight

answer is NO. The simple reason is that, there cannot be any

computational statements within a piece of code except for a set of

module calls , to construct the corresponding ESL representation.

Hence a solution is to further decompose the main-program (of

INTRPLAN & IPCAPTUR); meaning, removing the outer FOR loop and

incorporate it in a separate module, and call that module from the

main program. The figure 1.3.7 shows the final picture of the main

program for INTRPLAN and IPCAPTUR.

with IPCAPTEC ; use IPCAPTEC ;

with IPCAPTIO ; use IPCAPTIO ;

17

*** FIRST DRAFT ***

procedure IPCAPTUR is

begin

RETRIEVE_PREVIOUS_INPUTS_FROM_DISK

LET_USER_EDIT_INPUT_DATA

SAVE_EDITED_INPUTS_ON_DISK

SET_UP_CONSTANTS_AND_PLANETARY_EPHEMERIDES

DISPSAY_DATA_SHELL [TOTAL_DELTA_V

MAIN_LOOP;

DISPLAY_TRAJECTORY_DATA_OF_INTEREST_TO_USER

end

FIG. 1.3.6a

with !NTRPLEC ; use INTRPLEC ;

with INTRPLIO ; use INTRPLIO ;

procedure INTRPLAN is

begin

RETRIEVE_PREVIOUS_INPUTS_FROM_DISK

LET_USER_EDIT_INPUT_DATA

SAVE_EDITED_INPUTS_ON_DISK

SET_UP_CONSTANTS_AND_PLANETARY_EPHEMERIDES

DISPLAY_DATA_SHELL (NOMINAL_DEPARTURE_DELTA_V

MAIN_LOOP;

DISPLAY_TRAJECTORY_DATA_OF_INTEREST_TO_USER

end

FIG. 1.3.6b

where MAIN_LOOP is the newly created procedure to incorporate the

outer loop in the main program(s) (FIG 1.3.7).

procedure MAIN_LOOP is

begin

for J in I..!0 loop

COMPUTE_POSITION_AND_VELOCITY_OF_TARGET_PLANET (

INNER_LOOP;

end loop;

end MAIN_LOOP;

J)

FIG. 1.3.7

The final main program(s) is purely a set of module calls and within

ESL requirements. The ESL graphical representation to create the

main program structure is shown in FIG. 1.3.8.

18

*** FIRST DRAFT ***

FIG. 1.3.8

ESL Graphical Representation of The Main Program for INTRPLAN
or IPCAPTUR

m

1

n

P

U

data

Jut_fromdisk

MAIN_LOOP

Display_Data_.SheU

Semp_Constants_And_Planetary_Ephemeddes

disk

m

0

U

P

U

The decomposition of the main program(s) caused create two new

procedures INNER_LOOP and MAIN_LOOP. Obviously, these two

procedures have the format of a ESL sub program where, only

module calls are allowed. But first we need to modify the module

MAIN_LOOP. Introduction of a WHILE loop and to have a separate

procedure for the portion shown in fig.l.3.5 would be the main

modifications. Fig. 1.3.9 illustrates the MAIN_LOOP after the

modifications.

procedure MAIN__LOOP is

LOOP_END : boolean := false;

CONST : integer CONSTANT := i0

begin

while LOOP_END = false loop

COMPUTE_POSITION_A/qD_VELOCITY_OF_TARGET_PLA_'ET (

INNER_LOOP;

SET_CONTROL(J, LOOP_END, CONST);

end loop;

end MAIN_LOOP;

FIG. 1.3.9

J)

19

*** FIRST DRAFT ***

where SET_CONTROL is another new procedure, created to

incorporate the small portion of code shown in fig. 1.3.5. This is
shown in FIG. 1.3.10

procedure SET_CONTROL(J_IN : integer; DONE : boolean; CONST : integer) is

begin

J_IN := J_IN ÷ i;

if J_IN > CONST then

DONE := TRUE;

end if;

end SET_CONTROL;

FIG. 1.3.10

The benefit of making this modifications is that the software

component SET_CONTROL is now converted to a reusable module.

Hence this same module can be called by the procedure INNER_LOOP,

by making similar modifications as done for the module MAIN_LOOP.

Fig. 1.3.11 shows the modified procedure INNER_LOOP.

procedure INNERLOOP is

LOOP_END : boolean := FALSE;

CCNST : integer CONSTANT := 16;

begin

•while LOOP__-/_D = FALSE loop

COMPUTE_POSITION_AND_VELOCITY_OF__HOME_PLANET (I)

COMPUTE_TRAJECTORY_DATA (2, J)

DISPLAY_VALUE (TOTAL_DELTA_V , I, J }

CHECK_FOR_INTERRUPT_FROM_KEYBOARD

SET_CONTROL(J, LOOP_END, CONST);

end loop;

end INNERLOOP;

FIG 1.3.11

It is now very clear that the two procedures INNER_LOOP and the

MAIN_LOOP are converted into ESL subprograms. Figures 1.3.12 and

1.3.13 illustrate the ESL graphical representation of the two

subprograms.

2O

*** FIRST DRAFT ***

FIG. 1.3.12

The ESL object graph for subprogram MAIN_LOOP

m

n

P

U

e-,
loop compu_ e_9os i t ion_and_re loc i _y_o f_t arget_9 lane_

D
FIG. 1.3.13

The ESL object graph for subprogram INNER_LOOP

m

1

n

u

loop

• -- H _check_for_interruptfrom_keyboard

}_ display value

--_ _compu_ e__ re j ec _ory_da_

compu_ e__pos i t ion_and_ve !o c! _y_o f_home_; p lane

The same ESL object graph could be used for BESTIWAY It is

important to make sure that the user set proper constant values

when modules being called for individual applications. For example,

the contant value passed into the reusable module SET_CONTROL,

must be properly set inside procedures MAIN_LOOP and

INNER_LOOP. i.e values 10 and 16 respectively for INTRPLAN and

IPCAPTUR. Similarly, for BEST1WAY.

21

*** FIRST DRAFT ***

Comparatively, main program for POWERSWNG looks slightly

different to the main programs of the other three applications. But of

course, many of the modules already modified for reusable purposes

can be used in designing ESL object graph for POWERSWNG. For

POWRSWNG, the following procedure calls, must be added.

COMPUTE_POS ITION_AND_VELOCITY_OF_SWINGBY_PLANET

COMPUTE_TRAIECTORY_FOR_FIRST_HELIOCENTRIC_LEG

DISPLAY_VALUE 1

DISPLAY_VALUE2

COMPUTE_TRAJECTORY_FOR_SECOND_HELI_C_I_EG

The following is the ESL graphical representation for POWRSWNG.

FIG. 1.3.14

ESL Object graph for main program of POWRSWNG

_N LOOP _Disp

_Sa__up_constants_and_plane_ary_Ephemerides

_Le _ _u s e r _e_d i __aVep-ue_ae_a -inpu_ s-On-disk

1

: n

P

u

t Retrieve_previous_inputs_from_disk

22

*** FIRST DRAFT ***

FIG. 1.2.15

The ESL object graph for subprogram MAIN_LOOP

se co

_ Dsiplay--valuels e- oce t e_Compu_e_trajectory_for_fir t_h li n ric_l g

compute_position and velocity of swingby_p!ane_

FIG. 1.2.16

The ESL object graph for subprogram INNER_LOOP of POWRSWNG

I n

I P

I u
v

display_value2' _ _" p _from_keyboard

omput e_t raj ect o ry_da _a_fo r_s e cond_.he I iocent r ic_l eg

JF"_

loop compu _ e__Do s it ion_and_re loci ty_o f_t a rg e __p lane t

23

*** FIRST DRAFT ***

1.3.2 Modifications and Decomposition of Primitives.

In ESL terms, Primitives are the modules that cannot be further

decomposed or modules that are not worth decomposing. For

example the module RETRIVE_PREVIOUS_INPUTS_FROM_DISK is a

repeated module in all four applications in question. Though the

module in POWRSWNG is slightly different to the module in other

three applications, all four modules serve the same purpose. Further

decomposition is out of question. Hence, best option is to have a

single module that serves all four applications, making that a

reusable component. Of course, to build a common reusable module,

modifications are need to be carried out.

Let us look into the modifications that have been done in order to

make this module a reusable component. Originally, not a single

parameter was passed into the procedure. As a major modification,

two new parameters have been introduced namely FILE_NAME of

type string and NAME_IN of type APPLICATION_TYPE.

APPLICATION_TYPE is a user defined type and initially has the

enumerated type values INTRPLAN, IPCAPTURE, BEST1WAY, and

POWRSWNG. NAME_IN passes in the appropriate value based on the

application. FILE_NAME is the data_file name relevant to each

application. In other words the corresponding data_file name for

INTRPLAN is intrplan.get. Similarly others. Inside the module, CASE

and IF_THEN_ELSE structures have been introduced to serve

different application types. (See Appendix I)

Modifications have been made to the following procedures in a
similar manner.

LET_US ER_EDIT_INPUT_DATA

SAVE_EDITED_INPUT_ON_DISK

KILL_OUTDATED_INPUT_FILE

DISPLAY_LINE_LEADERS

DISPLAY_FOOTER_LINES

In each one of the above modules, a new input parameter of

APPLICATION_TYPE is introduced. This parameter passes the name

of the application that uses this module into the module. This helps

to serve the needs of each application program. For instance,

POWRSWNG performs a slightly different task in many of the above

modules. Passing in the name of the application helps direct the

24

*** FIRST DRAFT ***

execution to the specific area within the module where those

different tasks are carried out. (See appendix I)

1.3.3. Packages COMMON_MODULES, DATA_TYPES, DATA_TYPES_SPEC

The packages COMMON_MODULES, DATA_TYPES, DATA_TYPES_SPEC

COMMON_MODULES are the three new packages introduced into the

system. The services provided by these packages are described
below.

Package COMMON_MODULES.

This is a newly created package build to include all the common

reusable procedures and functions. Also this package includes newly

created reusable modules as a result of decomposition. For instance,

the modules described in section 1.3.1 namely MAIN_LOOP,

INNERLOOP and SET_CONTROL, are residing in package

COMMON_MODULES. Of course there are many more modules residing

in this package, which we will be discussing later in this report.

Package DATA_TYPES.

This is also a newly created package to include all the type

declarations and variable declarations, which are also repeated in all

four applications. However this package includes only the data types

and type declarations that are found in package bodies of all four

application programs.

Package DATA_TYPES_SPEC.

This package is similar to the package DATA_TYPES. This package is

created to include all the data types defined in the specifications of

application programs.

25

*** FIRST DRAFT ***

It is important to make a note that packages DATA_TYPES and

DATA_TYPES_SPEC are now directly reusable as all the application

programs use these packages.

1.3.4 Further Modifications.

After a thorough analysis of the modules

1. COMPUTE_POS ITION_AND_VELOCITY_OF_HOME_PLANET,

2. COMPUTE_POS 1TION_AND_VELOCITY_OF_TARGET_PLANET,

3. COMPLrI'E_POSITION_AND_VELOCITY_OF_SWINGBY_PLANET,

it was found that these modules are very similar and perform the

same task. Therefore, it is obvious that, from these three modules a

single reusable module can be built.

procedure COMPUTE_POSITION_AND_VELOCITY_OF_HOME_PLANET (I : integer) is

DT_SECS : FLOTE ;

begin

JDATE(HOME) := NOM_J'DATEfHOME) + LONG_FLOTE(I-8) * INTERVALfI-IOME)

DT_SECS := 86400.0 * FLOTE(JDATE(HOME) - PER_JDATE(HOME)) ;
PRO PAGATE_POS 1TION_AND_VELOCITY THRU_TIME (

PER_HELIPOS(HOME), PER_HELIVEL(HOME), DT_SECS, GM_SUNp(HOME),

HELIPOS(HOME), HELIVEL('HOME)) ;
end

FIG. 1.3.17

procedure COMPUTE_POSITION_AND_VELOCITY_OF_TARGET_PLANET (I : integer) is

DT_SECS : FLOTE ;

begin

IDATECTARG) := NOM_IDATE(TARG) + LONG_FLOTE(I-5) * INTERVAL(TARG)

DT_SECS := 86400.0 * FLOTE(IDATE(TARG) - PER_JDATE(TARG)) ;

PROPAGATE_POS ITION_AND_VELOCITY_THRU_TIME (

PER_HELIPOS(TARG), PER_HELIVEL(TARG), DT_SECS, GM_SUNp(TARG),

HELIPOS(TARG), HELIVEL(TARG)) ;

end

26

*** FIRST DRAFT ***

FIG. 1.3.18

procedure COMPUTE_POSITION_AND_VELOCITY_OF_SWlNGBY_PLANET (J : integer) is

DT_SECS : FLOTE ;

begin
JDATE(SWBY) := NOM_JDATE(SWBY) + LONG_FLOTE(J-5) * INTERVAL(SWBY)

DT_SECS :.. 86400.0 * FLOTE(JDATE(SWBY) - PER_JDATE(SWBY)) ;

p ROPAGATE_POS ITION_AN D_VELOCITY_TH RU_TIM E (

PER_HELIPOS(SWBY), PER_HELIVEL(SWBY), DT_SECS, GM_SUNp(SWBY),

HELIPOS(SWBY), HELIVEL(SWBY)) ;

end

FIG. 1.3.19

Shown above are the three procedures found in all four applications.

As we have said earlier, simply these modules do the same task

except for a few minor differences. The module shown below is a

procedure built in order to perform all three tasks, and is reusable.

procedure COMPUTE_POSITION_AND_VELOCITY_OF_PLANET (I : integer;

PLANET : PLA_T_TYPE;

NAME : APPLICATION_TYPE) is

DT_SECS : FLOTE ;

T_MP : TRAG_NODE

COUNTER : integer;

begin

case PLANET is

when TARGET i target => TEMP := TRAG;

if NAME = POWRSWNG then

COUNTER := I - 6;

else

COUNTER := I - 5;

end if;

when HOME i home => TE/4P := HOME;

COUNTER := I - 8;

when SWNGBY I swngby => TU_MP := SWBY;

COUNTER := I - _-

when others => null;

end case;

if ,NAME = POWRSWNG AND DESTINATION = SWNGBY then

JDATE(TEMP) := NOM_JDATE(TW--MP) ;

else

JDATE (TLMP) := NOM_JDATE {TLMP) + LONG_FLOTE (COUNTER) * IN'TERVAL (TEMP)

end if;

DT_SECS :- 86400.0 " FLOTE(JDATE(TEMP) - PER_JDATE(TEMP) }

PROPAGATE_POSITION_AND_VELOCITY_THRU_TIME (

PER_HELIPOS(TLMP} , PER_HELIVEL(TEMP) , DT_SECS , GM_SUNp(TEMP) ,

27

*** FIRST DRAFT ***

HELIPOS (TEMP) , HELIVEL(TEMP)

end COMPUTE_POE ITION_AND_VELOC ITY_OF_PLANET;

FIG. 1.3.20

) ;

This new procedure is named COMPUTE_POSITION_AND_VELOCITY

_OF_PLANET, and have three new parameters namely I of type

integer, DESTINATION of type DESTINATION_TYPE and NAME_IN of

type APPLIATION_TYPE. DESTINATION_TYPE is also a user defined

type and it defines the destination (HOME, TARGET or SWINGBY).

APPLICATION_TYPE is the same type described earlier.

At this point, it is important to make a note that, creating a new

module by the name COMPUTE_POSITION_AND_VELOCITY

_OF_PLANET will change the corresponding object name in ESL object

graph shown in section 1.3.2

FIG. 1.3.21

The ESL object graph for subprogram MAIN_LOOP

m

1

n

P

U

o- #_ !
compuC e_9os i _ ion and_ve loci ty_o f_.Dlanet

loop

28

*** FIRST DRAFT ***

FIG. 1.3.22

The ESL object graph for subprogram INNER_LOOP

m

1

p

U

t loop

d s a v, check-f°r-in_errup_-fr°m-keYb°ardU

__ i pl y_ alue
om c_

comput e_Do s i t ion_andre loci ty_o f._Dlanet

Similarly the object names

c ompute_position_and_velocity_of_home_planet

compute_position_and_velocity_of_target_planet

compute_position_and_velocity_of_swingby_pl anet

in figures 1.3.15, 1.3.16 and 1.3.18 for POWRSWNG wilI change

accordingly.

1.3.5 Modification of procedure COMPUTE_TRAJECTORY_DATA

Compute_trajectory_data is a another procedure available in all four

applications. A thorough analysis revealed that this procedure is an

ideal module to decompose and convert into a ESL sub program.

Decomposition had to be done so that the grains (decomposed

components) could be reused in other similar modules throughout

the applications. One major change made in reengineering this

module is to eliminate exception handlers. May be this looks very

inappropriate, but elimination of exception handlers was necessary

to convert this module into a ESL sub program. We know that in ESL

a sub program allows only a set of procedure or function calls Also

we need to realize that all these changes must be done having ESL in

mind. At this point we need to think of how to tackle the granularity

problem, i.e how big a grain is ?. The reason is that, when

29

*** FIRST DRAFT ***

decomposing the module, very small grains of size one, two or three
lines remains within the module. In ESL terms, we cannot leave them

within a module. We are forced to eliminate them and reside them in

seperate modules.

Let us take a look at how decomposition was done. FIG. 1.3.23

shows decomposed grains by drawing lines in between. Each grain is

residing in a procedure with a appropriate procedure name.

procedure COMPUTE_TRAJECTORY_DATA (I, J : integer) is

TOO_FAST : exception ;

TOO_HOT : exception ;

SINFAC : FLOTE ;

TEST_VEC : VECTOR ;

TF_DAYS : FLOTE ;

begin

.. EXCEPTION_HANDLER_I0001

TF_DAYS := FLOTE(JDATE(TARG) - JDATE(HOME))

if abs(TF_DAYS) <= 20.0 then

raise TOO_FAST

end if

.. CALCULATIONS

if TF_DAYS > 0.0

then DEP := HOME

else DEP := TARG

end if

if DEP = HOME

then ARR := TARG

else ARR := HOME

end if

TF_SECS :_ 86400.0 * abs(TF_DAYS)

ANGMO_PREF :- HELIPOS(DEP) * HELIVEL(DEP)

TEST_VEC :- HELiPOS(DEP) * HEL!POS(ARR) ; -- * gives cross product

if TEST_VEC & ANGMO_P._LEF < 0.0 -- & gives dot product

then SINFAC :- -ABS(TEST_VEC)

else SINFAC := .ABS(TEST_VEC)

end if

XFR_ANG :_ FULL_REVS*,"_OPI ÷ ATANI(SINFAC, HEL!POS(DEP)&HELIPOS(ARR)) ;

DVALUE(HELIOCENTRIC_TRANSFER_ANGLE)(i,J) := DATA_MATRIX_INTEGER(

DEGPERRAD * XFR_NG) ;

DVALUE(FLIGHT_TIME)(I,J) := DATA_MATRIX_INTEGER{ TF_DAYS)

...

FIND_BEST_TRANSFER_TKAJECTORY

.. CALL_FOR_EXCEPTION_HANDLER_I0003_10004

if (FULL_REVS > 0) and (SMA_SIZE /= BEST_SIZE) then

SOLVE_LAMBERT_PROBLEM (HELIPOS(DEP), TF SECS, HELIPOS(ARR),

ANGMO_PREF, XFR_HELIVEL(DEP), XFRHELIVEL(ARR),

GM_SUN , FULL_REVS, BEST_SIZE) ;

end if

.. EXCEPTION_HANDLER_I0002

if ARRIVAL_SPEED_PENALTY > 0.0 then

raise TOO_HOT

end if

...

3O

*** FIRST DRAFT ***

COMPT/TE_HELIOCENTRIC_TRAJECTORY_DATA (I, J

COMPUTE_PLANETOCENTRZC_DEPARTURE_DATA (I, J

COMPUTE_PSANETOCENTRIC_ARRIVAL_DATA (I, J

pragma page ;

exception

when TOO_FAST =>

for KIND in DATAKIND loop

DVALUE(KIND)(I,J) := i0001

end loop

when TOO_HOT =>

for KIND in MULTIREV_SEMIMAJOR_AXIS..APHELION_DISTANCE loop

DVALUE(KIND) (I,J) := 10002

end loop

when LAMBERT_Z_ITERATION_FAILED_TO_CONVERGE =>

for KIND in MULTIREV_SEMIMAJOR_AXIS..APHELION_DISTANCE loop

DVALUE(KIND) {I,J) := 10003

end loop

when LAMBERT_C2uNNOT_ATTAIN_SPECIFIED_NUMBER_OF_REVS =>

for KIND in MULTIREV_S_MIMAJOR_AXIS..APHELION_DISTANCE loop

DVALUE(KIND) (I,J} := 10004

end loop

end

FIG. 1.3.23

All exceptions are handled within the same module where the

exception is raised. For example , consider the newly created

procedure EXCEPTION_HANDLER_10001. The exception is raised if

the absolute value of TF_DAYS is less than or equal to 20.0. The

module is reengineered in such a way that the sequence of

instructions that are to be executed the moment this execption is

raised are within the same procedure itself. This is illustrated in FIG.
1.3.24.

Procedure EXCEPTION_HANDLER_I0001(TF_DAYS : flote; DONE : boolean; NAME : in

APPLICATION_TYPE; CATEGORY : CATEGORY_TYPE] IS

Begin

if NAME = POWRSWNG then

if CATEGORY = LEG1 then

TF_days := flote(Jdate(SWBY] JDATE(HOME));

if abs(TF_DAYS) <= 20.0 then

for kindl in LEGI_HELIOCENTRIC_TRANSFER_ANGLE..LEGI_FLIGHT_TIME loop

VALUE!(KINDI) (J) := i0001;

end loop;

end if;

DONE := true;

elsif CATEGORY = LEG2 then

TF days := flote(Jdate(TRAJ) - JDATE(_dBY]};

if abs(TF_DAYS] <= 20.0 then

31

*** FIRST DRAFT ***

for kindl in LEG2_HELIOCENTRIC_TRANSFER_ANGLE..LEG2_FL!GHT_TIME loop

VALUE2(KIND2) (!,J) := 10001;

end loop;

end if;

DONE := true;

end if;

else

TF_days := flote(Jdate(TRAG) - JDATEIHOM_}};

if abs(TF_DAYS) <= 20.0 then

for kind in DATA_KIND loop

DVALUE(KIND)(I,J) :- i0001;

end loop;

DONE := true;

end if;

end if;

end EXCEPT!ON HANDLER I0001;

FIG. 1.3.24

The variable TF_DAYS should be passed-in from the module

COMPUTE_TRAJECTORY_DATA because it is declared inside that

module. Moreover, three new parameters NAME_IN, CATEGORY and a

boolean variable DONE are passed into the module. CATEGORY is of

user defined type CATEGORY_TYPE and have elements (LEG1 and

LEG2).

In the original code of this module, once the exception is raised, the

execution is passed to the area where the exception is defined. Once
that area is executed, the control will transferred to the end of the

module. In the reengineered module, this is handled by a if-then-
else structure. We have selected to introduce an if-then-else

structure because ESL supports such structures. Hence the

reengineered procedure COMPUTE_TAJECTORY_DATA will have the

following format and is a sub program within ESL requirements.

procedure COMPUTE_TRAJECTORY_DATA (I, J : integer) is

SL_rFAC : FLOTE ;

TEST_VEC : VECTOR ;

TF_DAYS : FLOTE ;

DONE_I, DONE_2, DONE 3 : boolean := false;

DESTINATION_D : DESTINATION_TYPE := DEPARTURE;

DESTINATION_A : DESTINAT!0NTYPE:= ARRIVAL;

NAME : APPLICATION_TYPE:= INTRPLEC;

CATEGORY := D_;

begin

EXCEPTION_KANDLERI0001(TF_DAYS,DONE_I, NAME , CATEGORY);

if DONE_I - false then

CALCULATIONS(TF_DAYS, SINFAC, TEST_VEC);

FIND_BEST_TRANSFER_TRAJECTORY;

CALL_FOR_EXCEPTIONZHANDLER_I0003_!0004{DONE2,CATEGORY,NAM_I;

32

7%

*** FIRST DRAFT ***

if DONE_2 = ffalse then

EXCEPTION_HANDER_I0002 (DONE_3, NAME) ;

if DONE_3 -- true then

COMPUTE_HELIOCENTRIC TRAJECTORY_DATA(I, J, NAME);

COMPUTE_PLANETOCENTRIC_ARRIVAL_OR_DEPAR_JRE_DATA(I, J, DESTINATION_D, NAME);

COMPUTE_PLANETOCENTRIC_ARRIVAL_OR_DEPARTURE_DATA (I, J, DESTINATION_A, NAME)

end if;

end if;

end if;

end COMPUTE_TRAJECTORY_DATA;

FIG. 1.3.25

The corresponding ESL object graph diagram for the above sub

program is shown in fig. 1.3.26.

FIG. 1.3.26

ESL OBJECT DIAGRAM FOR THE SUB PROGRAM COMPUTE_TRAJEC'I

n _ON_IND-BEST--TRANAFER-TRAJ ICTO RY

EXCE PTION_HAND LER_l 000 !

_DLER_I0002

003_10004

The ESL object graphs of the same sub program in BEST1WAY and

POWRSWNG are slightly different to the above. The graph shown

above is the ESL object graph for INTRPLAN. The ESL object graph

for IPCAPTUR is almost the same except for less one procedure call(

i.e exception_handler_ 10002).

33

*** FIRST DRAFT ***

In the original program code for the procedure

COMPUTE_TRAJECTORY_DATA, we see two procedure calls by the

names COMPUTE PLANETOCENTRIC_DEPARTURE_DATA and

COMPUTE_PLANETOCENTRIC_ARRIVAL_DATA. Since the two

procedures do the same task, we could have one procedure to handle

both situations and building another reusable module.

procedure COMPUTE_PLANETOCENTRIC_DEPARTURE_DATA (l,J : integer) is

DECL : integer ;

DELV : FLOTE ;

DV : integer ;

RASC : integer ;

VINHAT : VECTOR ;

VINMAG : FLOTE ;

VINVEC : VECTOR ;

VINF : integer ;

begin

VINVEC := (XFR_HELIVEL(DEP)-HELIVEL(DEP})*VBASE_MSOE(DEp)

V!NI_%G := ABS(VINVEC)

VINI_T := VINVEC / VINMAG

DELV := DEPARTURE_VELOCiTY_INCREMENT

DV := DATA_MATRIX_INTEGER(DELV * i00) ;

VINF := DATA_MATRIX_INTEGER(VINMAG * i00) ;

DECL :_ ROUND(ASIN (VINHAT(3}) * 1800 / PI) ;

RASC := ROUND(AT_I(V!NHAT(2] , VINHAT(1)) * 1800 / PI)

DVALUE(NOMINAL_DEPARTURE_DELTA_V)(I,J) := DV ; -- dkm/sec

DVALUE(DEPARTURE_V_LN'FiNITY_MAGNITUDE){I,J) := VINF ; -- dkm/sec

DVALUE(DEPARTURE_V_INFINITY_DECLINAT!ON) (I,J) := DECL ; -- 0.I deg

DVALUE(DEPARTURE_V_!NFINITY_RTASCENSIOM } (!,J) := RASC ; -- 0.! deg

end ;

FIG. 1.3 27

procedure COMPUTE_PLANETOC_NTRIC_RRIVAL_DATA (l,J : integer) is

DECL : in=eger ;

RASC : integer ;

VINHAT : VECTOR ;

VINMAG : FLOTE ;

VINVEC : VECTOR ;

VINF : integer ;

SPEED : FLOTE ;

SPD : integer ;

begin

ViNVEC := (XFR_HELIVEL(ARR)-HELIVEL(ARR))*VBASE_MS0_E(ARR)

VL'/_ikG := ABS(VIN'VEC)

V!_T := VINVEC / VIXrMAG

34

*** FIRST DRAFT ***

SPEED := SQRT (VESQ (ARR) + VINMAG*VINMAG)

SPD :ffi DATA_MATRIX_IN'TEGER (SPEED * I00) ;

VINF := DATAMATRIX_!NTEGER (VINMAG " I00) ;

DECL := ROUND(ASIN (VINKAT(3)) " 1800 / PI) ;

RASC :ffi ROUND(ATANI(VINHAT(2) , VINHAT(1)) " 1800 / PI } ;

DVALUE(ARRIVAL SPEED) (I,J) := SPD ; -- dkm/sec

DVALUE(ARRIVAL_V_INFINITY_MAGNITUDE)(I,J) :- VINF ; -- dkm/sec

DVALUE(ARRIVAL_V INFINITY_DECLINATION)(I,J) :-- DECL ; -- 0.i deg

DVALUE(ARRIVAL_V_INFINITY_RTASCENSION){I,J) :- RASC ; -- 0.i deg

end

FIG. 1.3.28
procedure COMP;/TE_PLANETOCENTR!C_ARRIVALOR_DETARTURE_DATA (I,J: integcr;

DESTINATION : DESTINATION_TYPE;

NAME: APPLICATION_TYPE) is

DECL : integer;

RASC : integer;

VINHAT: VECTOR;

VINMAG: FLOTE;

VINVEC: VECTOR;

VINF : intager;

DV_OR SPD : integer;

TEMP: TRAJ_NODE;

NDDV OR_AS: ;

DVIM OR_AVIM: ;

DVID_OR_AVID: ;

DVIR_OR_AVIR;

TOT_DELV: flote;

TOT_DV : integer;

begin

case DESTINATION is

when DEPARTURE I departure => TEMP := DEP;

when ARRIVAL I arrival => TEMP := ARR;

end case;

VINVEC := (XFR HELiVEL(TEMP)- HELIVEL(TEMP))*VBASE M50 E(TEMP);

VINMAG := ABS(VINVEC) ;

VINHAT := VINVEC / VINMAG;

if DESTINATION = DEPARTURE then

DELV OR SPEED := DEPARTURE VELOCITY INCREMENT;

if .NAME = IPCAPTURE then

TOT_DELV := ARRIVAL_VELOCITY_INCR=_4ENT + DELV_OR_SPEED;

TOT_DV := DATA_MATRIX_INTEGER(TOT_DEV " i001;

end if;

NDDV_OR_AS := NOMINALDEPARTURE DELTA_V;

DVIM_OR_AV!M := DEPARTUREV_INF!NiTY_MAGNITUDE;

DVID_OR_AVID := DEPARTURE_V_INFINITY_DECLINATION;

DVIR_OR_AV!R := DEPARTURE_V_INFINITY_RTASCENSION;

elsif DESTINATION = ARRIVAL then

DELV_OR_SPEED := SQRT(VESQ(TEMP) ÷ VINMEG*V-MEG);

DELV_OR_SPEED := MIN (DELV_OR_SPEED , MAXAVELMAG(TEMP);

NDDV_OR_AS := ARRIVAL_SPEED;

DVIM_OR_AVIM := ARRIVAL_V_INFINITY_MAGNITUDE;

DVID_OR_AViD := ARRIVAL_V INFINITY_DECLINATION;

DVIR_OR_%V!R :- ARRIVAL_V_INFINITY_RTASC_NSION;

end if;

DV_OR_SPD := DATA_MATRIX_INTEGER(DELV_OR_SPEED * 100);

VI_._F := DATA_MATRIX_INTEGER(VINMAG * I00);

DECL :ffiROU_D(ASIN (V!_HAT(3)) " 1800/ PI) ;

35

*** FIRST DRAFT ***

RA_,C := ROUND(ATANI(VINHAT(2), VINHAT(1)) * 1800 / Pl);

if NAME := IPCAP."_JRE _hen

DVALUE(NDDV_OR_AS)(l,J} :-- DV OR_SPD ; -- dkrn/sec

DVALUE(NDDV_OR_AS)(I,J) :_ DV_OR_SPD ; -- dkrn/sec

DVALUE(DVIM_OR_AVIM] (l,J) :- V!NF ; -- dkrn/sec

DVALUE(DVID_OR_AVID)(I,J) :- DECL ; -- 0.i deg

DVALUE(DVIR_OR_AVIR } (I,J) :s RASC ; -- 0.i deg

cnd if

end;

FIG. 1.3.29

The figures 1.3.27 and 1.3.28 show the two procedures in question.

Fig. 1.3.29 is the modified procedure built to represent both the

procedures shown in figures 1.3.27 and 1.3.28. This procedure

replaces 8 modules in all four applications. And hence, it is reusable.

In order to make this a reusable module, new variables have been

introduced along with the necessary modifications. This procedure

also resides in the package common_modules which is designed to

reside all the newly created, and modified modules.

Procedure COMPUTE_TRAJECTORY_FOR_FIRST_HELIOCENTRIC_LEG,

and COMPUTE_TRAJECTORY_FOR_SECOND_HELIOCENTRIC_LEG are

available only in applications BESTlWAY and POWRSWNG. However

the procedure in POWRSWNG is very similar to the procedure

COMPUTE_TRAJECTORY_DATA in INTRPLAN & IPCAPTURE. Hence this

procedure in POWRSWNG can be replaced by already designed

reusable components and made a seperate ESL object graph (see FIG.

1.2.). But as we have done in earlier cases, these two procedures

in BEST1WAY have been modified and built one single reusable

procedure named COMPUTE_TRAJECTORY_FOR_FIRST_AND_SECOND_

HELIOCENTRIC_LEG. The following figures show the modifications.

procedure COMPUTE_TRAJECTORY_FOR_FIRST_HELIOCENTRIC_LEG is

ANGMO_PREF : VECTOR ;

TFI_DAYS : FLOTE ;
TFI_SECS : FLOTE ;

begin

TFI_DAYS := FLOTE(JDATE(SWBY) - IDATE(DEP))
TFI_SECS := 86400.0 * TFI_DAYS

ANGMO_PREF := HELIPOS(DEP) * HELIVEL(DEP)

SOLVE_LAMBERT_PROBLEM (HELIPOS(DEP), TFt_SECS, HELIPOS(SW'BY),

ANGMO_PREF,

XFR HELIVEL(DEP), XFR_HELIVEL(SW'BY), GM_SUN);

AN'rE_SWBY_VINVEC := XFR_HELIVEL(SWBY) - HELIVEL(SWBY)

36

*** FIRST DRAFT ***

end

FIG. 1.3.31

procedure COMPUTE_TRAJECTORY_FOR_SECOND_HELIOCENTRIC_LEG is

ANGMO_PREF : VECTOR ;

TF2_DAYS : FLOTE ;

TF2_SECS : FLOTE ;

begin
TF2_DAYS := FLOTE(JDATE(ARR) - JDATE(SWBY))

TF2_SECS := 86400.0 * TF2_DAYS

ANGMO_PREF := ItELIPOS(ARR) * HELIVEL(ARR)

SOLVE_LAMBERTPROBLEM (HELIPOS(SWBY), TF2_SECS, HELIPOS(ARR),

ANGMO_PREF,

XFR_I-IELIVEL(SWBY), XFR_HELIVEL(ARR), GM_SUN);

POST_SWBY_VINVEC := XFR_HELIVEL(SWBY) - HELIVEL(SWBY3

end

FIG. 1.3.32

The following is the modified version of the above two modules.

procedure COMPUTE_TRAJECTORY_FOR_FIRST_ANDSECOND_HELIOCE_RIC_LEG(CATEGORY :

CATEGORY_TYPE) is

-- THIS IS A REUSABLE COMMON MODULE FOR COMPUTE_TRAJECTORY_FOR_FIRST_HELIOCENTRIC_LEG

--& COMPUTE_TRAJECTORY_FOR_SECOND_HELIOCENTRIC_LEG --

-- CHANGES HAVE BEEN MADE ACCORDINGLY.

ANGMO_PREF : VECTOR ;

TFI_DAYS : FLOTE ;

begin

if CATEGORY = LEG1 then

TFi_DAYS := FLOTE(JDATE(SWBY) - JDATE(DEP))

ANGMO_PREF := HELIPOS(DEP) " HELiVEL(DE?)

SOLVE_LAMBERT_PROBLEM (HELIPOS(DEP), TFI_DAYS* 86400.0, HELIPOS(SWBY),

ANGMO_PREF, XFR_HELrVEL(DEP), XFR_HELiVEL(SWBY), GMSUN I;

ANTE_SWBYVINVEC := XFR_HELIVEL(SWBY) - HELIVEL{SWBY)

else

TFI_DAYS := FLOTE(JDATE(ARR) - JDATE(SWBY))

ANGMO_PREF := HELIPOS(ARR) " HELI_L(ARR)

SOLVE_LAMBERT_PROBLEM (HELIPOS(SWBY), TFI DAYS * 86400.0 , HELIPOS(ARR),

ANGMO_PREF, XFR_HELIVEL(SWBY), XFR_HELIVEL(ARR), GM_SUN);

POST_SWBY_VINVEC := XFR_HELIVEL(SWBY) - HELIVEL(SWBY)

end if;

end

37

*** FIRST DRAFT ***

1.3.5 Application BESTIWAY

A few modules in BEST1WAY do not match with any of the modules

in either POWRSWNG or INTRPLAN or IPCAPTUR. These modules

canot be made reusable because they are unique only to BEST1WAY.

Therefore the following modules remain same in the application
BEST1WAY.

FIND_BEST_DIRECT_TRANSFER_TRAJECTORY

FIND_BEST_SWINQBY_TRAJECTORY

ISOLATE_UNPOWERED_SWINGBY_SOLUTION

COMPUTE_PLANETOCENTRIQSWINGBY_TRAJECTORY_DATA

1.3.6 Application POWRSWNG

As in BESTIWAY, POWRSWNG also has a few unique modules that
are used nowhere else. Since these modules cannot be made

reusable, they remain unchanged within the application itself.
Hence the modules

COMPUTE_LEG I_PLANETOCENTRIQTRAJECTORY_DATA

COMPUTE_LEG2_PLANETOCENTRIQTRAJECTORY_DATA

COMPUTE_PLANETOCENTRIQSWINGBY_TRAJECTORY_DATA

remain unchanged.

1.3.7 Module DATA_MATRIX_INTEGER

Module DATA_MATRIX_INTEGER is one common module found in all

four applications. This module can be used in all applications without

any modifications. Therefore this module has been shifted into the

package COMMON_MODULES where all the reusable common modules
reside.

1.3.8 Complete ESL object graphs for all four applications.

This section provides full ESL object graphs for all four applications.

38

Z

_o

P.

<+

.<
I

I

e,,§ + _.

,...i

_- lo=u

[i +--,_..+.+..
I I IN_.

_I II+:,
,i.,

+

+,
I...... I

I I_ .+,'

J+
I I

L_--

I

m

'7

E

e.,

i,+

_o

+_

[_ I

' rL]:

!

, _,
1' 1 _°

= _ _, _l I

° i
I_ ,' • 3

_" _"_i .= I I._

L;i " fli

,
i.,,

y_,'_

Z

z

e,
e,

e.

ii

I-,

u

0

,-1

Z

2

c

5

0

t

3.

I I

!

_t

°
I

!

I0-..

!

°,4

0!I'
i |ji,
6

|
sl I I_. _

FI bL_

_ •

*** FIRST DRAFT ***

2. Lessons Learned About Current ESL Tool

CBR matching window will not help us retrieve components

the class structure helps.

only

Component attributes describing the components are not sufficient

now; particularly, there are no slots for the purpose of the

components.

ESL graphs are similar to DFDs with control flows, but have at least 2

additional constructs: loop and if-then.

Does not address at all the library functions, CM functions, IV & V
functions.

Standards for components ? How can we make a reusable

component? Domain oriented vs. Computer-Science oriented

components.

No facilities for FOR loops except for WHILE loops.

In the ESL system, the looping structures are restricted only to while

loops. This is a severe draw back. It was found that , during the

reengineering process, all the FOR loops in subprograms had to be

changed into while loops. In order to do this more modules had to be

created. One example is an unnecessary module has to be created to

increment the iterated value for the WHILE loop. But if there were

facilities to implement FOR loops, this unnecessary creation of
modules could have been avoided.

Lack of labelling the ESL graph.

Another shortcoming found in the ESL graphs was that the lack of

directional labelling. For example, in an if node, we know that there

are two dirctions, one for THEN and the other for ELSE. The graph
does not show this, and the reader would not know which one is

THEN and which one is ELSE. A situation like this would put the
reader into confusion.

43

*** FIRST DRAFT ***

,It

Syntax errors found in generated Ada code.

A few serious syntax errors were found in the generated Ada code.

EITOrS"

1. When already existing graph is modified, it won't allow you to

exit the sytem without saving it. If you select the delete option, it

will erase the graph from the knowledge base butthe drawing

file.dwg will still exist.

2. Cannot resize the graph editor panel.

3. Connector drawing algorithm too simple. Needs improvements,

Multiple link.

4. Drawing files may not be consistent with the knowledge base.

5. When a node is deleted on the drawing panel, still that object is

shown on "Node on graph" pannel.

'IP

44

